Advanced Virtual Memory for Exascale*

Kamil Iskra, Kazutomo Yoshii, Rinku Gupta, Pete Beckman

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Argonne, IL 60439, USA
{iskra,kazutomo,rgupta,beckman}@mcs.anl.gov

1 Background

By nearly every metric—cost, power consumption, ca-
pacity, bandwidth, and latency—memory is emerging as
one of the most constrained resources on compute nodes
of HPC systems [12]. These constraints will force future
systems to abandon flat SMP memory space in favor of
a more distributed NUMA design, even within a socket.
With exponentially increasing numbers of cores per node,
the overhead of global cache coherence is likely to ex-
ceed the usefulness of this feature, at which point cache
coherence will be limited to multiple separate coherence
domains within a CPU. Experimental designs such as In-
tel SCC [13] or NVIDIA Echelon [6] are early examples
of this trend.

Power is also a consideration for translation lookaside
buffer (TLB) implementations; for example, in Intel
StrongARM, TLB consumes 17% of the chip power [10].
For that reason, on many-core heterogeneous systems,
lightweight “throughput” cores are likely to lack advanced
capabilities such as hardware page walking support for
TLB misses. We have seen the consequences on Blue
Gene systems when running a kernel that uses paged
memory, where irregular access patterns can result in a
performance decrease by an integer factor compared with
TLB-miss-free execution [16].

HPC programming models are becoming more diverse.
Partitioned Global Address Space (PGAS) languages such
as UPC [19] and Co-Array Fortran [5] explicitly con-
trol data locality and distribution; their memory model
places requirements on memory management different
from those of the MPI-only model. Dynamic languages
such as Python are also gaining traction as a mechanism
to assemble an application from many pre-existing com-
ponents. Emerging capabilities for thread level specula-
tion [8, 17, 18] or transactional memory [9, 15] place even
more requirements, as do programmable prefetch engines,
complex alignment requirements, and the possibility of

*This work was supported by the Office of Advanced Scientific Com-
puter Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357.

stacked memory on the CPU. The integration of NVRAM
into the node is yet another consideration.

Clearly, a considerably more advanced memory manage-
ment system is needed.

2 Advanced Virtual Memory

We expect the exascale systems to keep the basic concept
of virtual memory; it is simply too convenient an abstrac-
tion from the point of view of programmability and re-
source management to be abandoned readily. It is critical
to fault isolation and protection between core system man-
agement functions and application components, as well as
to managed access to hardware that could be integrated as
an extension to the memory system, such as NVRAM and
networking queues.

Paged memory, on the other hand, will not be generally
sustainable in HPC contexts because of the TLB miss
overheads, to which HPC applications can be very sen-
sitive. Increasing the TLB size makes the power problem
worse, and continuing to increase the page size results in
greater memory fragmentation. Still, paged memory en-
ables a number of useful optimizations such as memory-
mapped I/O, zero pages, or copy-on-write, and a number
of useful scripting or debugging tools depend on it. Thus,
it cannot be abandoned completely.

We believe that the best solution for future systems is a
hybrid scheme featuring multiple memory management
models within different regions of the virtual address
space. Using different page sizes and TLB purge poli-
cies can provide both maximum, TLB-miss-free perfor-
mance for more static memory regions, such as program
text, heap, or stack, and the flexibility of paged memory
needed by dynamically loaded shared libraries and light-
weight threading. We call this scheme “advanced virtual
memory”’; in addition to extensive software effort required
on the OS kernel side for a seamless integration, the hard-
ware (specifically the memory management unit and the
TLB) needs to be flexible enough to support multiple page
sizes and a combination of static and dynamic TLB en-
tries. This infrastructure will need an API to determine,
in coordination with the runtime system and applications,

which regions of the virtual address space are thread-local
(private) or read-only and which are actually meant to be
shared between threads in read-write mode. On current
SMP systems, this is a largely artificial distinction; but in
the future, this information could be used to optimize the
cache coherence protocol on hardware that supports it, so
that the overhead of cache snooping is limited to the CPU
cores and memory pages that need it.

It should also be possible, for some HPC data structures,
to turn off the cache coherence protocol completely or
to set the “tile size” for cores sharing a snooping cache.
Consider application data structures that are shared but
infrequently modified. Core-local caches can still provide
fast access to the data, but software-based invalidation
would be required to handle updates to the structure. In
fact, the first Blue Gene (BG/L) used this scheme because
cache coherence hardware was not included in the chip.
Software cache coherence was the only option for SMP-
like operation of user-level threads [2]. Another approach
would be to duplicate frequently accessed read-only data
using local, noncoherent memory, if such is available.
The OS could perform such merges and splits transpar-
ently, depending on memory load and access pattern. CPU
cache could be explicitly partitioned between “local” and
“main” memory in order to prevent local memory ac-
cesses from purging the lines holding main memory data;
this approach is already possible on PowerPC CPUs, but
no APIs currently exists to take advantage of this feature.
We need to explore how to provide such advanced func-
tionality to applications with minimal modification to the
application code.

For large, many-core CPUs an explicit intranode message
passing system that uses either polling or interprocessor
interrupts could provide the functionality needed to build
explicit APIs for sharing data structures. Since DMA en-
gines prefer contiguous pinned pages, it is also important
that such interfaces reflect whether the region will be the
target of a DMA from either another core or the intercon-
nect.

3 Related Work

In mainstream OS kernels, effective transparent super-
page management system that can utilize larger physical
pages to reduce TLB misses has been implemented by
Navarro et al. [14] in the FreeBSD kernel. Linux kernel
has had support for larger pages through hugetlbfs [4] for
a long time, but it has been far from convenient to use. Re-
cent work of Arcangeli [3] adds the much-needed trans-
parency; that support, however, is limited to anonymous
(dynamically allocated) memory and provides essentially
a best-effort infrastructure that does not guarantee perfor-
mance predictability or repeatability.

In HPC space, predictable, high memory performance

through the use of large pages is provided by light-
weight kernels such as CNK [1] on Blue Gene and Cata-
mount [11] on Cray; such kernels have a number of other
limitations, however, that do not make them the best
choice for managing complex exascale nodes. Shmueli et
al. [16] evaluated Linux’s hugetlbfs on the compute nodes
of BG/L using a user-space libhugetlbfs [7] wrapper and
found it to provide many of the memory performance ben-
efits of lightweight kernels. At Argonne, we have devel-
oped Big Memory [20-22], a memory region covered by
very large, semi-static TLB entries. A computational pro-
cess can be transparently mapped into Big Memory to
achieve performance parity with IBM’s CNK, while the
rest of the node can keep using paged memory. Because
Big Memory is physically contiguous, it can be used for
DMA-based internode communication on Blue Gene/P.

4 Summary

Challenges addressed: Memory hierarchy, specifically
controlling overheads and runtime/application manage-
ment of memory.

Maturity: As much of the complexity involves com-
bining two well-tested techniques, static TLB and paged
memory, we consider the approach to be mature.

Uniqueness: HPC is the driving force behind reduc-
ing the overheads of memory access. Related efforts have
been undertaken in mainstream OS communities, but the
solutions they provide are incomplete and come without
performance guarantees, because extending them to cover
the full spectrum of possible circumstances that can occur
in a complex multiuser environment is hard. A more lim-
ited solution targeted to HPC platforms and applications
is far more likely to be successful.

Novelty: To the best of our knowledge, no existing solu-
tion provides the combination of low overhead, flexibility,
and performance guarantees we expect to be necessary by
HPC workloads at exascale.

Applicability: To varying extent, every application
would benefit from lower memory access overheads; thus,
a comprehensive solution would probably be welcome by
other communities. As indicated earlier, however, we ad-
vocate an HPC-limited solution, which would potentially
not cover a full range of multiuser environment use cases
(such as the use of swap space), limiting its appeal to other
communities.

Effort: The level of effort would vary significantly de-
pending on the choice of the OS kernel and the desired
level of integration and applicability outside of core HPC
space, but the bulk of the work could conceivably be car-
ried out by two people and an advisor/supervisor within
three to five years.

References

(1]

(2]

(3]

(4]

(3]
(6]

(71

(8]

(9]

(10]

(11]

(12]

(13]

(14]

N. Adiga et al. An overview of the Blue Gene/L super-
computer. In Supercomputing *02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, Los Alamitos,
CA, 2002. IEEE Computer Society Press.

G. Almidsi, L. R. Bachega, S. Chatterjee, M. Gupta,
D. Lieber, X. Martorell, and J. E. Moreira. Enabling dual-
core mode in Blue Gene/L: Challenges and solutions. In
SBAC-PAD, pages 19-27, 2003.

A. Arcangeli. Transparent hugepage
https://events.linuxfoundation.org/slides/2011/lfcs/
Ifcs2011_hpc_arcangeli.pdf.

support.

K. Chen, R. Seth, and H. Nueckel. Improving enterprise
database performance on Intel Itanium architecture. In
Proceedings of the Linux Symposium, pages 98—108, Ot-
tawa, ON, Canada, July 2003.

Co-Array Fortran. http://www.co-array.org/.

NVIDIA Echelon. http://www.nvidia.com/content/PDF/sc_
2010/theater/Dally_SC10.pdf.

D. Gibson and A. Litke. libhugetlbfs. http://sourceforge.
net/projects/libhugetlibfs.

L. Hammond, M. Willey, and K. Olukotun. Data specula-
tion support for a chip multiprocessor. SIGOPS Operating
Systems Review, 32(5):58-69, 1998.

E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A
new approach to exclusive data access in shared mem-
ory multiprocessors. Technical Report UCRL-97663,
Lawrence Livermore National Laboratory, Livermore, CA,
Nov 1987.

T. Juan, T. Lang, and J. J. Navarro. Reducing TLB
power requirements. In Proceedings of the 1997 Interna-
tional Symposium on Low Power Electronics and Design,
ISLPED 97, pages 196-201. ACM, 1997.

S. M. Kelly and R. Brightwell. Software architecture of
the light weight kernel, Catamount. In Proceedings of
the 47th Cray User Group Conference, Albuquerque, NM,
May 2005.

P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carl-
son, W. Dally, M. Denneau, P. Franzon, W. Harrod,
K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Ster-
ling, R. S. Williams, and K. Yelick. Exascale computing
study: Technology challenges in achieving exascale sys-
tems. Technical report, DARPA IPTO, AFRL, Sept. 2008.

T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas,
P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe. The 48-core SCC processor: the programmer’s
view. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC *10. IEEE Computer Soci-
ety, 2010.

J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practi-
cal, transparent operating system support for superpages.

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

In Proceedings of the 5th ACM Symposium on Operat-
ing System Design and Implementation, volume 36 of
ACM SIGOPS Operating Systems Review, pages 8§9-104,
Boston, MA, Dec. 2002.

N. Shavit and D. Touitou. Software transactional memory.
In PODC ’95: Proceedings of the Fourteenth Annual ACM
Symposium on Principles of Distributed Computing, pages
204-213. ACM, 1995.

E. Shmueli, G. Almasi, J. Brunheroto, J. Castanos,
G. Dozsa, S. Kumar, and D. Lieber. Evaluating the ef-
fect of replacing CNK with Linux on the compute-nodes
of Blue Gene/L. In ICS ’08: Proceedings of the 22nd An-
nual International Conference on Supercomputing, pages
165-174, New York, 2008. ACM.

G.S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In ISCA ’95: Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
414-425. ACM, 1995.

J. Steffan and T. Mowry. The potential for using thread-
level data speculation to facilitate automatic paralleliza-
tion. In HPCA ’98: Proceedings of the 4th International
Symposium on High-Performance Computer Architecture,
page 2, Washington, DC, 1998. IEEE Computer Society.

Unified Parallel C. http://upc.gwu.edu/.

K. Yoshii, K. Iskra, P. C. Broekema, H. Naik, and P. Beck-
man. Characterizing the performance of Big Memory on
Blue Gene Linux. In 2nd International Workshop on Par-
allel Programming Models and Systems Software for High-
End Computing, pages 65-72, Los Alamitos, CA, Sept.
2009. IEEE Computer Society.

K. Yoshii, K. Iskra, H. Naik, P. Beckmanm, and P. C.
Broekema. Performance and scalability evaluation of “Big
Memory” on Blue Gene Linux. The International Journal
of High Performance Computing, 2010.

K. Yoshii, H. Naik, C. Yu, and P. Beckmanm. Extending
and benchmarking the “Big Memory” implementation on
Blue Gene/P. In Proceedings of the International Work-
shop on Runtime and Operating Systems for Supercomput-
ers (ROSS’11), pages 65-72, May 2011.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the Government.

